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AERONAUTICS

EFFECTS ON GROSS THRUST AND PUMPING

CHARACTERISTICS OF EJECTORS OPERATING AT OFF-

DESIGN MACH NUMBERS

By AM’red S. Valerino and Richard A. Yeager

SUMMARY

An investigation was conducted in the NACA Lewis 8- by 6-foot
supersonic tunnel to determine the external-stream effects on the gross
tkumst and pumping characteristics of ejectors operating at off-design

. Mach numbers. Ejectors having diameter ratios of 1.16, 1.45, and 1.70
were tested over a range of primsry-jet pressure ratios and secondary
weight flows at free-stream Mach rmuibersof O, 0.63, 1.5, 1.8, and 2.0.
Design Mach nunibersof the 1.16-, 1.45-, and 1.70-diameter-ratioejectors,
obtained by hssuming an inlet total-pressure recovery on a current-
production engine, were approximately 1.7, 2.2, and 2.6, respectively.
The spacing ratio of the 1.70-diameter-ratioejector was varied fromO
to 1.19.

Results of the investigation indicate that the primary-jet pressure
ratio above which quiescent-air and supersonic-air data agree decreased
with decreasing diameter ratio and with increasing spacing ratio. In-
creases in secondsry weight flow reduced the primary-jet pressure ratio
above which external-stream effects disappear. No external-stresm
effects were found at a free-stream Mach nuniberof 0.63. Quiescent-air
data overestimated the gross jet’thrust of high-diameter-ratio ejectors
operating below design conditions tith low values of secondary weight
flow. External-stream effects on ejector gross-jet-thrustratios result-
ed from low base pressures obtained at supersonic speeds.

INTRODUCTION

r. In order to fully evaluate an exhaust system for supersonic air-
craft, the interaction effects between the jet and the external stream
must be known. The jet can affect the flow over the afterbdy, thereby
altering the drag. In addition, the external stream can alter the
internal-flow characteristics and under some conditions affect the
thrust.

. .
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Recent ejector-nozzle data (ref. 1), obtained in the NACA Lewis 8-
by 6-foot supersonic tunnel, indicate that at design conditions the jet
thrust and pumping characteristics agree with quiescent-air data. At
jet pressure ratios below design, however, the reduced pressures in the
base region cause the jet to overexpand (ref. 2) with the result that
both thrust and pumping characteristics do not agree with data obtained
in quiescent air.

In order to etiend the available data on the effects of etiernal
stream on the performance of ejector nozzles operating at off-design con-
ditions, an investigationwas conducted in the NACA Lewis 8- by 6-foot
supersonic tunnel. Ejectors having diameter ratios of 1.16, 1.45, and
1.70 were tested with variable secondsry flow at zero angle of attack
and at free-stream Mach numbers of O, 0.63, 1.5, 1.8, and 2.0. Spacing
ratios of the 1.16- and 1.45-diameter-ratioejectors were 0.38 and 0.48,
respectively. The spacing ratio of the 1.70-diameter-ratioejector was
varied from O to 1.19. By assuming an inlet total-pressure recovery on a
current-productionengine, design Mach numbers of the 1.16-, 1.45-, and
l.70-diameter-ratioejectors of approximately 1.70, 2.2, and 2.6, respec-
tively, were calculated. The 1.70- and 1.45-diameter-ratioejectors
serve as nonafterburning configurations throughout the Mach number range
investigated. The temperature of the exhaust jet was maintained at ap-
proximately 760° R.

The
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SYMBOLS

following symbols are used in this report:

area, sq ft

drag coefficient based on maximum frontal area “

pressure coefficient, (p - Po)/qo

primary-nozzle-exit diameter, in.

shroud-exit diameter, in.

diameter ratio

gross jet thrust, lb

M Mach nuder

P total pressure, Ib/sq ft

P static pressure, lb[sq ft
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S/Dp

T

w

x

dynamic pressure, lb/sq ft

radius, in.

distance from primary-nozzle exit to shroud exit, in.

spacing ratio

total temperature, %

weight flow, lb/see

corrected weight-flow ratio

distance along afterbody, ikn.

.

Subscripts:

a boattail
,-

b shroud base

e ejector

i conditions above which stream effects sre eliminated

P primary

s secondary

o free stream

APPARATUS AND PROCEDURE

Model Installation

The jet exit model was installed in the Lewis 8- by 6-foot supersonic
tunnel as shown in figure 1. Internal flow was obtained from a separately
controlled air supply. The air, preheated to 300° F, was introduced into
the model by means of the two hollow support struts. A more detailed
discussion of the tunnel installation can be found in reference 3.

.

The quiescent-air test rig was located in the lower balance chaniber
of the 8- by 6-foot supersonic tunnel. The range of primary-nozzle-jet
pressure ratios was obtainedby introducing high-pressure air into the
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model and varying the ambient pressure of the
of an exhauster system.

NACA RM E56C14.
.

balance chaniberby means
.

A schematic diagram of the model showing internal details and perti-
nent external model stations is presented in figure 2. Air for the
ejector secondary passage was obtained from the primary-air supply by
means M a controlled calibrated bleed valve. Also shown”in figure 2
are components of the model connected to the strain-gage balance.

Ejector Configurations

The ejector configurations investigated were obtained by using three
primly-jet nozzles in conjunction with a fixed afterbody. Coordinates
of the fixed-sfterbody section are shown in figure 3. The contour of the
afterbody was parabolic for the first 10 inches of its length and then
conical for the next 6.93 inches. The conical section was followed by
a parabolic shroud. Internal diameters of the entrance and exit stations
of the afterbody were 8.0 and 4.34 inches, respectively. The shroud exit
angle was 24.5°.

Schematic diagrams of the three primary-jet nozzles are presented in J
figure 4. Nozzles A and B were conical nozzles with exit diameters of
3.74 and 3.00 inches, respectively. Nozzle C was a contoured nozzle with
an exit diameter of 2.55 inches. The entrance diameter of each nozzle ‘
was 4.10 inches. Calibrated flow discharge coefficients of 0.99, 0.98,
and 1.0 were obtained for nozzles A, B, and C, respectively. The design
Mach nunbers obtained by aEsuming an inlet total-~ressure recovery on a
current-production engine, and the diameter ratios Ds/% obtained by
using the three nozzles with the fixed afterbody, are shown in the fol-
lowing table:

Spacing ratios S/D.

Design Mach
umber,

M

1.7

2.2

2.6

Nozzle Ds/Dp

A 1.16

B 1.45

c 1.70

of 0, 0.38, 0.48, 0.56, 0.85, and 1.19 were ob-
t&ed by inserti~~constant-srea sections of various lengths upstream
of the afterbody at model station 49.25.

Schematic diagrams of the ejector configurations investigated are
presented in figure 5. Each configuration is designated by two numbersj “

.
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the first number refers to the diameter ratio and the second to the
spacing ratio. Configurations 1.16-0.38 and 1.45-0.48 consisted of the
fixed titerbody with nozzles A and B, respectively, and with a spacer of
1.44 inches inserted upstream of the titerbody at model station 49.25.
Configurations 1.70-0, 1.70-0.56, 1.70-0.85, and 1.70-1.19 consisted of
the sfterbody with nozzle C and spacer lengths of O, 1.44, 2.19, and 3.0
inches, respectively.

Data Reduction .

Total weight flow through the model was determined
edged orifice shown in figure 1 and a rotamster, which
heater fuel flow. The primary-nozzle weight flow wp

from the sharp-
measured the pre-
was obtained by

subtracting the weight flow through the calibrated bleed valve ws from
the total weight flow. The total temperature was measured in the support
struts and was assumed constant throughout the model. The primary-nozzle
total pressure ‘P was calculated from continuity relations at the noz-

zle entrance, where the area, static pressure, weight flow, and tempera-
ture were known. The secondary total pressure Ps was obtained from a
total-pressure rake located in the secondary passage.

The base pressures were measured with four static orifices located
in the base of the shroud, as shown in fi~e 3. Boattail &nags were
foundby integrating the boattail static pressures (fig. 3).

The method of force measurement and the reduction of these data are
described in detail in reference 1. The gross ejector thrust is equal
to the thrust-minus-drag (measuredly the strain-gage balance) plus the
summation of forebody and afterbody drag (obtainedfrom jet-off reading
and boattail drag).

REsms

Pumping, Thrust, and

AND DISCUSSION

Base Pressure Characteristics

Flow conditions at the exit plane of any nozzle depend on the pres-
sure ratio Pp/~, where ~ is the local pressure on the base just

downstream of the exit. However, test-stand performance data ere pre-
sented = a function of the pressure ratio pp/Poj since the local pres-

sure pb is

performance,

(
where s=

Po

ratio pJpo

equal to anibientpressure. In supersonic flight, the nozzle

when expressed as a function of the pressure ratio pp/Po
F&&

)
will differ from the test-stand performance if the

~~’

is not equal to unity. Hoyever, for any nozzle there does

.- . . . . —._ ______ __



.* -

6
-

NACA RM E56C14

exist a pressure ratio (Pp/~)i above which the nozzle-exit Mach nuder

and the ratio of the exit static pressure to nozzle total pressure are
invariant with pressure ratio. This pressure ratio is dependent upon
nozzle geometry and is the pressure ratio at which the flow is fully
expanded. There is also another pressure ratio (Pp/PO)i above which

exit flow conditions are independent of stream effects. This value is
given

where

speed range of interest. It should be noted that the pressure ratio

occur over the flight

(Pp/po) ~ ‘depenfi on afterbdy shape and flight speed ;ange as well as

nozzle geometry.

For an ejector nozzle, the geometry and therefore the pressure ratio

(pp/Po)~ are determined by the diameter ratio) shroud length, and

secondary-to-primaryweight-flow ratio. This is illustrated in the
ejector performance characteristics presented in figures 6 to I_l. A com-
parison of the performances of ejectors 1.16-0.38, 1.45-0.48, and 1.70-
0.56 (figs. 6, 7, and 9, respectively) indicate that, the lower th’e
ejector diameter ratio, the lower the primsry-jet pressure ratio (Pp/PO)i
above which quiescent-air and supersonic-air data agree. In figure
6, it is assumed that quiescent-air and supersonic-air data agree since
no effects were found with variable supersonic Mach m.uibers. Increasing
the ejector diameter ratio results in thrust losses (due both to the
overexpansion of the primary jet and to the adverse external-stream
effects) when flight Mach nuniberis changed from O to;a supersonic value.
The overexpansion of the primary jet and the adverse “streameffects
result from low base pressures obtained at supersonic flight speeds.

A comparison of the performances of configurations 1.70-0, 1.70-0.56,
1.70-0.85, and 1.70-1.19 (figs. 8, 9, 10, and I_l,respectively) indicate
that, the higher the spacing ratio, the lower the primary pressure ratio
(pP/PO)~ above which quiescent-air and supersonic-air data agree. WS

results since increasing the ejector spacing ratio lowers the primary-
Jet pressure ratio Pp/PO required to choke the secondary-flowpassage.

Since configuration 1.70-0 (fig. 8) has zero shroud length, external-
stream effects are apparent at all pressure ratios, that is, (Pp/po)i+=.

For all configurations tested, increasi~ secondary flow decreases
the value.of primary-jet pressure ratio (Pp/po)i above which quiescent-

air and supersonic-air data agree. Therefore, increasing secondary weight .

flow reduces the etiernal-stream effects.
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Subsonic data (~ . 0.63) agree with quiescent-air data, regardless

of configuration. Obviouslyj at a Mach umber of 0.63, the pressure
ratio ~/Po must be close to unity.

As mentioned earlier in this sectibn, the flow conditions at the
exit should depend on the pressure ratio pp/P-b“ Therefore, the ejector

secondsry-to-primarytotal-pressure ratio Ps/Pp and the exit m~ntw

should depend only on the pressure ratio Pp/~. Gross thrust till

depend on both Pp/~ and Pp/po, because it includes a pressure-area

term p~s. Exit momenta for the ejectors were not computed, but the

ejector secondary-to-primarytotal-pressure ratio Ps/Pp is presented

as a function of the pressure-ratio Pp/~ in figure 12. By maintaining

the same primary-jet total- to base-static-pressure ratio Pp[~, the

same pumping characteristics will be obtained, regardless of flight
speed.

Boattail Drag Characteristics

‘TypicalJet effects on afterbody pressure distribution are presented
in figure 13. As the base pressure is increased, due to changes in noz-
zles and jet pressure ratios, the rearmost boattail pressure coefficients

Cp,a also increase.

Since the same afterbody was used in conjunction with the three
primary-jet exhaust nozzles, it shouldbe possible to generalize results
for all configurationsby plotting the drag coefficient of all configura-
tions investigated against the ratio of base-to-free-stream static pres-
sure pJpo. The boattail drag characteristics are shown in figure 14.

Because of the increase in boattail pressure coefficient with increasing
base pressure, the boattail drag coefficient decreases with increasing
base-to-free-stream static-pressure ratio. Increasing the supersonic
free-stream Mach nunber results in a slight decrease in boattail drag
coefficient.

The ejector gross-jet-thrust ratio Fe/Fn as well as the secondary-

to-primary total-pressure ratio Ps/PD and t~e primsry-jet pressure

ratio Pp/Poj corresponding to a boat%ail drag coefficient ~,a, can be

obtained from the base-to-free-stream static-pressure ratio PJPo ~d
the use of figures 6 to 11. -

—- -——.- -—.— -— ——-—_—
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Stream Effects on Jet Thrust for Typical Ejector Installations .

The stream effects
stallations utilizing a
pressure ratios:

on ejector @oss thrust for typical ejector in-
turbojet engine which delivers the following

t

% pp/Po
2.0 10

1.8 8

1.5 I 6

can readily be shown by comparing the ejector gross thrusts in quiescent
air with those at supersonic speeds. The compsxison of ejector gross
jet thrusts indicate that quiescent-air data will overestimate the super-
sonic ejector gross jet thrust. The predicted errors for four configura-
tions are shown in fignre 15. It should be remeriberedthat, since these
results depend on the pressure ratio ~/po, they sre associated with

the particular boattail configurations investigated. ,

For the ejector configurations shown (exclusive of configuration
1.70-0), the largest predicted errors are obtained at a free-stream Mach
number of 1.5 at a primary-jet pressure ratio of 6. The largest error
(17 percent) is obtained with ejector 1.70-0.56. As the diameter ratio
is increased, the error in estimating ejector gross jet thrust increases.
Likewise, increasing the spacing ratio from O to 0.56 (figs. 15(b) and
(c), respectively) results in larger prediction errors at the supersonic
Mach nunhrs investigated. However, a flm%her increase in spacing ratio
from 0.56 to 1.19 (figs. 15(c) and (d), respectively) decreases the pre-
diction error. Increasing secondary weight flow also decreases the error,
regardless of configuration.

8UMMARY OF REsuLTs

An investigation was conducted in the Lewis 8- by 6-foot supersonic
tunnel to determine external-stream effects on the gross thrust and
pumping characteristics of several ejector-type &haust nozzles operating
at pressure ratios below design. Ejectors having tiameter ratios of 1.16,
1.45, and 1.70 designed to operate at flight Mach nunibersof 1.7, 2.2,
and 2.6, respectively, were tested over a range of primary-jet pressure
ratios and secondary weight flows at free-stream Mach numbers of O, 0.63, .

1.5, 1.8, and 2.0. The spacing ratio of the 1.70-diameter-ratioejector
was varied from O to 1.19. .
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The following results were obtained:
.

1. Adverse stream effects on ejector jet thrust resulted from low
base pressures obtained at supersonic speeds.

2. The prinwry-jet pressure ratio above which the external-stream
effects me eliminated decreased with decreasing diameter ratio and in-
creasing spacing ratio.

3. Increases in secondsry weight flow decreased the primary-~et
pressure ratio above which qtiescent- and supersonic-air data agree.

4. Mach nuniber0.63 and quiescent-air data a~eed, regar~ess of
configuration.

5. If a turbojet engine, delivering pressure ratios of 6t 8, and 10
at Mach nunibersof 1.5, 1.8, and 2.0, respectivel.yyis used in conjunc-
tion with the particular afterbody configurations investigated, quiescent-
air data wiu overestimate the gross-jet-thrustratio of high-diameter-
ratio ejectors operating with low values of secondsry weight flow. Gross-
thrust-ratio prediction errors as high as 17 percent were obtained with
ejector 1.70-0.56 at zero secondary weight flow. The largest errors in
predicting gross thrust were obtained at a Mach nu.niberof 1.5 and a
primary-jet pressure ratio of 6.

.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, March 19, 1956
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(a) Ejector 1.16-0.38.

.

-11.44t-
-.

Station 70.19

~

(b) Ejector 1.45-0.48.

Figure 5. - Ejector configurations. (All dtiensionsin inches.)
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Figure6. - Pumping,thrust,andbaaepressurecharacteristics
of ejector1.16-0.38.
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acteristicsof ejector1.45-0.48.
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Figure 9. - Pumping, thrust, and base pressure characteristics
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